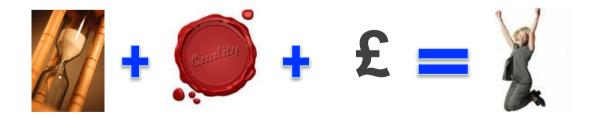

Performance and resilience in the extended organisational ecosystem


WWW.SBS.OXFORD.EDU
EDUCATING LEADERS FOR 800 YEARS

Dr. Alexandra Brintrup

with Dr. Felix Reed-Tsochas Dr. Steve New Dr. Tomomi Kito

Theories of the organisational ecosystem

- Transaction cost economics: Focus on transaction costs, risk, and uncertainty as the basis of "make or buy" decisions (Williamson 1975)
- Resource dependency: Each member tries to avoid becoming dependent on others and tries to make others dependent on it (Pfeffer and Salancik 1978)
- Embededness: Created to maximize supply chain performance (Uzzi 1997)
 - What global structure do these local interactions result in?

Why does the extended ecosystem matter?

Traceability

Nestle recalls Milky Bar buttons
Food Standards Agency April 26, 2011

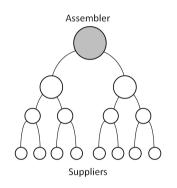
Nestle recalls coffee in glass scare
The Telegraph May 21, 2010

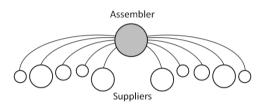
Growth

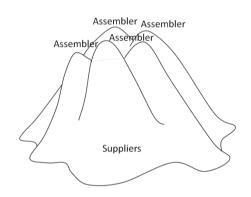
Wal-mart growth faces supply chain hurdle
Reuters July 28, 2011

Robustness

Japan supply chain fears rattle world stock markets


BBC March 15, 2011

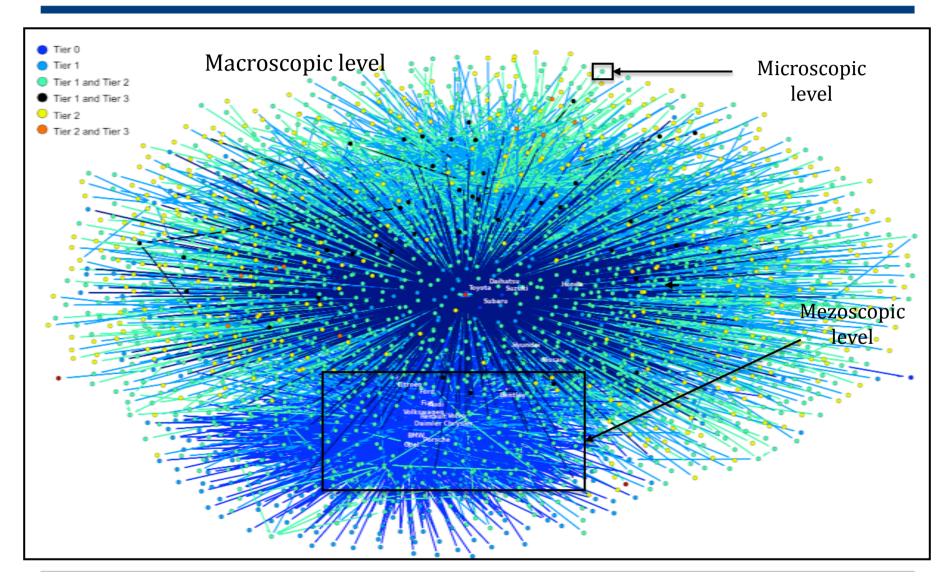

Operations

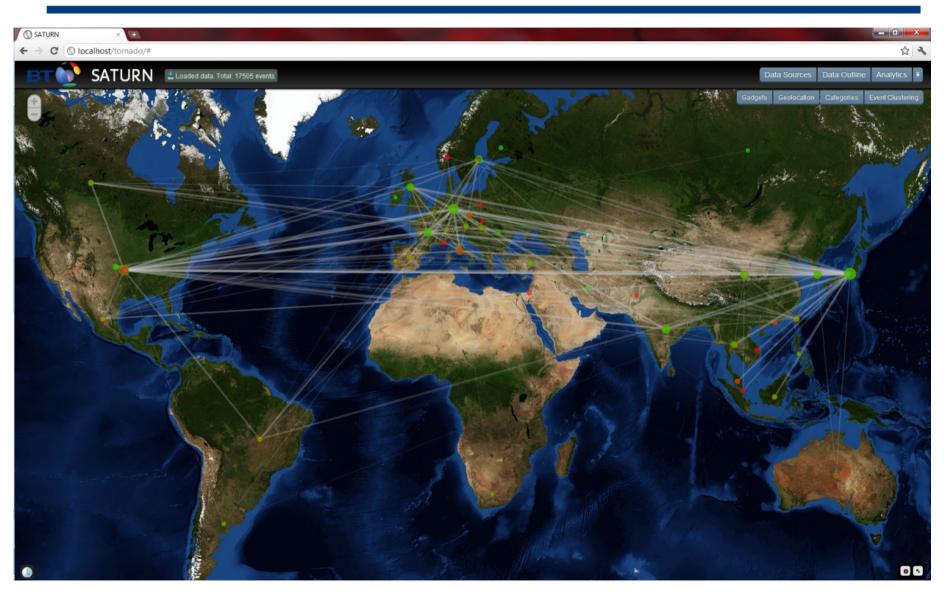

Chief hails emergence of new, simpler Aviva

Financial Times August 4, 2011

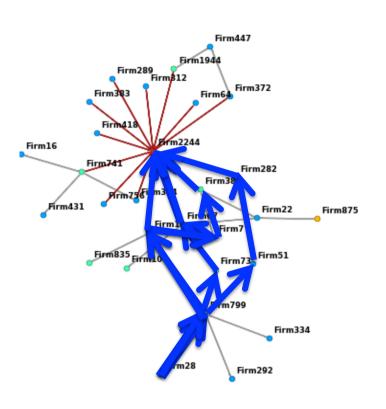
No empirical maps of supply chains exist!

Time to look at real data...

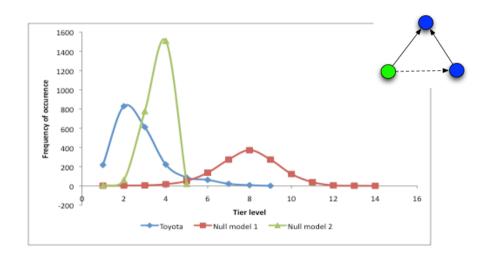

- Iconic production system & supply chain:
 - -Robust:
 - Demand fluctuations
 - Disruptions: Aisin fire, Niigataken Chuetsu-oki earthquake


- -Knowledge sharing
- -Global

The real picture!

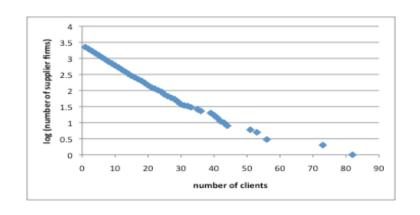


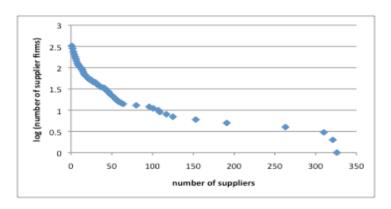
Redefining tiers



- Traditional definition: shortest length to top
- Reality is multi-tier
- Frequency or mean of paths tells us more

It's a small world!



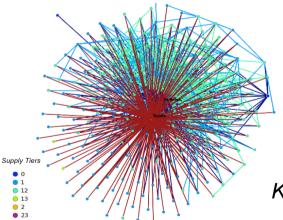


- •Average degree of separation is 2.1
 - •Fostering diffusion of reputation and facilitation of trust?
- •24% chance for a triad
 - •Many firms depend on many other firms directly or indirectly

Robustness

- Multi-sourcing (5.2 per product type)
- Robust to random failures (6.2 consecutive failures)
- Vulnerable to failures in
 - -Link hubs (3.8 consecutive failures)
 - -Rare product hubs (3.2 consecutive failures)
 - -Japanese firms (5.1 consecutive failures)

Resilience: Coopetition



$$C = \sum_{p}^{P} \frac{2l_{p}}{n_{p}(n_{p} - 1)}, 0 \le C \le 1$$

P total number of product types

 l_p number of existing links between suppliers who produce Product type p

 n_p total number of suppliers of Product type p

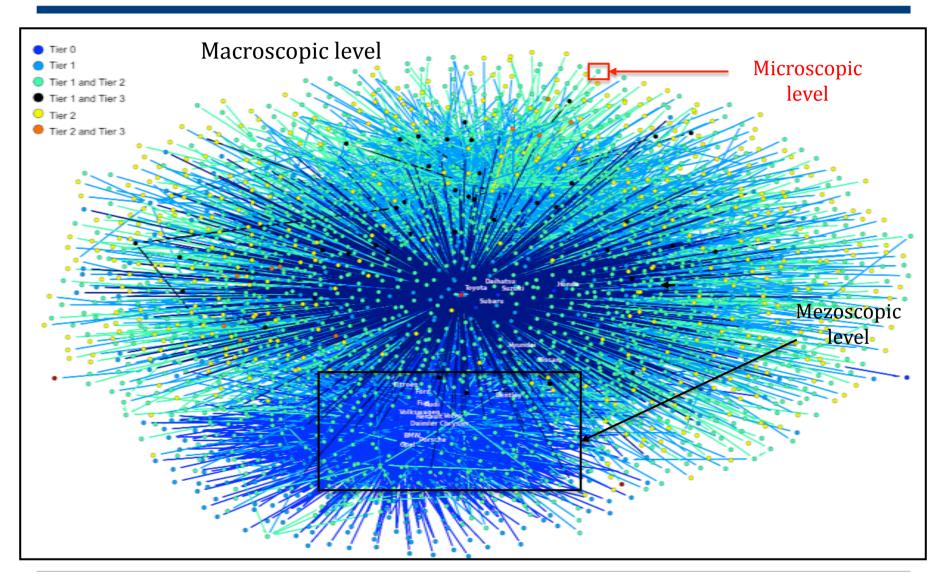
Kyoho-kai supplier association C=0.21

- At last we have a real picture of supply chains!
- Metrics to measure how closely strategy aligns with topology
 - -Robustness, information diffusion and cooperation
- Questioned long-standing stylised sketches and redefined tiers

Robustness:

Cascades of disruptions
Synergies in improvement
Trade offs

Dynamics:

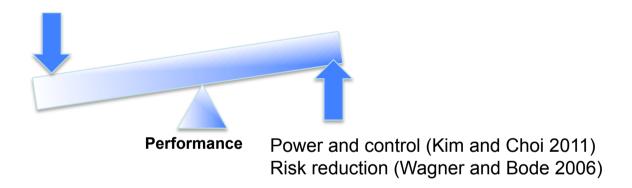

Adaption
Shrinkage and growth

Strategy:

Changing incentive structures - Dyads to Triads Network positioning

Sneak peek: *Network effects on firm performance*

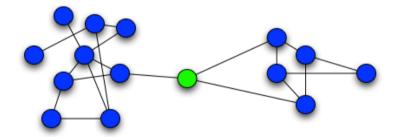
Sneak peek: Network effects on firm performance


How is firm performance impacted by the way the firm embeds itself in a supply network?

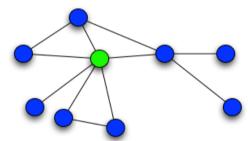
- Methodology: GLS regression (with Lasso)
- **Dependent variable**: Total annual revenues, Return on assets, EBITDA, Net Profit **Independent variables**:
 - -General dimensions that impact performance
 - Age (Stinchcombe 1965), Firm size (Sørenson and Stuart 2000)
 - -Controls:
 - Public/ Private, Japanese/Other (Hennart, Roehl, and Zietlow, 1999)
 - -Network dimensions: *centrality, tiers, triads*

Network dimensions: (1) Supply Network Centrality (SNC)

Division of attention (Berry et al 1991) Relationship instability (Lawson 2008)


Network dimensions:

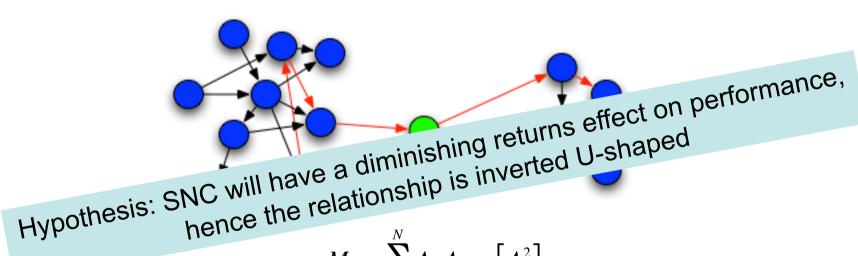
(1) Supply Network Centrality (SNC)



Positioning for business flow

Betweenness centrality

Degree centrality



Network dimensions:

(1) Supply Network Centrality (SNC)

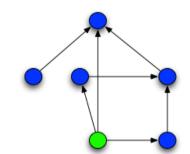
Supply Network Centrality (SNC):

$$M_{ij} = \sum_{k=1}^{N} A_{ik} A_{kj} = [A^2]_{ij}$$

$$M_{ij}^{L} = \left[A^{L}\right]_{ij}$$

$$SNC_{i} = \sum_{l=1}^{L} \sum_{j=1}^{N} \left[M^{l}\right]_{ij}$$

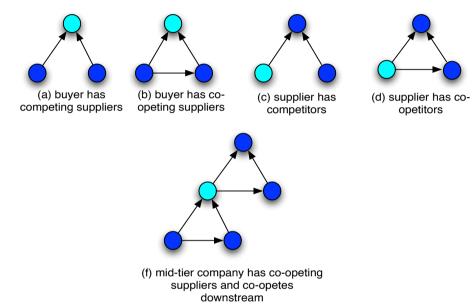
N= num nodes L=max tier length i=node j=all other nodes


Network dimensions:

(2) Supply Network Tier Level (SNTL)

Positioning for information flow

$$SNTL_{j} = \frac{\sum_{l=1}^{L} [M^{l}]_{ij} I}{\sum_{l=1}^{L} [M^{l}]_{ij}}$$



L=max tier length i=target node j=node

Hypothesis: SNTL has a negative effect on performance

Network dimensions: (3) Triads

Complexity (Havila 2004, Philips 1998) Bargaining power loss (Asanuma 1994) Structural over- embededness (Uzzi 1997)

Hypotheses:

The number of triads and performance

ຸວວາແve relatior ຸ່ກ for both buyers and suppliers

Performance

Structural holes – non redundant information (Burt 1972)

• Participation in both upstream and downstream triads will increase encoyation in both upstream and downstream triads will increase encoyation in both upstream and downstream triads will increase encoyation in both upstream and downstream triads will increase encoyation in both upstream and downstream triads will increase encoyation in both upstream and downstream triads will increase encoyation in both upstream and downstream triads will increase encoyation in both upstream and downstream triads will increase encoyation in both upstream and downstream triads will increase encoyation in both upstream and downstream triads will increase encoyation in both upstream and downstream triads will increase encoyation in both upstream and downstream triads will increase encoyation in both upstream and downstream triads will increase encoyation in both upstream and downstream triads will increase encoyation in both upstream and downstream triads will increase encoyation in both upstream and downstream triads will increase encoyation in both upstream and downstream and triads will be encoyation in both upstream and downstream triads will be encoyation in both upstream and downstream triads will be encoyation in both upstream and downstream and triads will be encoyation in both upstream and triads will be encoyation in both upstr

Structural embededness (Uzzi 1997)

The boring but necessary bit...

- N=115
- There is multicollinearity divided model into 7 sub-models max VIF
 1.05
- Kolmogorov-Smirnov test shows sample is not statistically different
- Performance data from OneSource (inter-resource reliability > 0.71)

Tier length

Centrality

Suppliers' triads and holes

Buyers' triads and holes

		Standardi
	Model 1	
Intercept	0.002	
Independent		
variables		
SNTL1		
SNTL2 SNC		
SNC		
(SNC) ²		
SSC		
SSH		
BSC BSH		
SSC X BSC		
BSC A BSC		
Control		
variables		
AGE	0.186*	
SIZE	0.270**	
PUB	0.001	
JAP	0.123	
	0.16	
R ²	0.16	
Adjusted R ²	0.13	
F	5.05	
p-value	9.23e-04	
Improvement		
over base R ²		

p < 0.10; * p < 0.05; ** p < 0.01;*** p < 0.001

Tier length

Centrality

Suppliers' triads and holes

	Standardized estimate					
	Model 1	Model 2				
Intercept	0.002	-0.002				
Independent						
variables						
SNTL1		-0.254**				
SNTL2						
SNC		0.422***	SNTL has a negative impact			
$(SNC)^2$			ONTE has a hegalive impact			
SSC						
SSH						
BSC						
BSH						
SSC X BSC						
Control						
variables						
AGE	0.186*	0.248**				
SIZE	0.270**	0.174*				
PUB	0.001	0.048				
JAP	0.123					
\mathbb{R}^2	0.16	0.39				
Adjusted R ²	0.13	0.35	SNC has a positive impact			
F	5.05	10.63				
p-value	9.23e-04	3.818e-09				
Improvement						
over base R ²		0.22				
	р	< 0.10; * p<				

Tier length

Centrality

Suppliers' triads and holes

	Standardized estimate			
	Model 1	Model 2	Model 3	
Intercept	0.002	-0.002	-0.811	
Independent				
variables				
SNTL1		-0.254**		
SNTL2			-0.195**	SNITI has a nogative
SNC		0.422***	0.366***	SNTL has a negative
(SNC) ²				impost
SSC				impact
SSH				
BSC				
BSH				
SSC X BSC				
Control				
variables				
AGE	0.186*	0.248**	0.128**	
SIZE	0.270**	0.174*	0.256**	
PUB	0.001	0.048	0.054	
JAP	0.123		0.718	
R ²	0.16	0.39	0.40	SNC has a positive
Adjusted R ²	0.13	0.35	0.37	•
F	5.05	10.63	12.47	impact
p-value	9.23e-04	3.818e-09	1.061e-10	•
Improvement				
over base R ²		0.22	0.23	
	р	< 0.10; * p	< 0.05; **]	

Tier length

Centrality

Suppliers' triads and holes

Buyers' triads and holes

		~ ~ ~ ~ ~	dardized	csumate
Model 1	Model 2	Model 3	Model 4	
0.002	-0.002	-0.811	-0.011	
	-0.254**		-0.244**	
		-0.195**		
	0.422***	0.366***	0.342**	
			-0.194*	
				C_{α}
				Ce
				dimi
				diiiii
0.186*	0.248**	0.128**	0.286**	
0.270**	0.174*	0.256**	0.174*	р
0.001	0.048	0.054	0.045	۲
0.123		0.718	0.032	
0.16	0.39	0.40	0.43	
0.13	0.35	0.37	0.39	
5.05	10.63	12.47	9.53	
9.23e-04	3.818e-09	1.061e-10	1.023e-09	
	0.22	0.23	0.27	
	0.002 0.186* 0.270** 0.001 0.123 0.16 0.13 5.05	0.002 -0.002 -0.254** 0.422*** 0.422*** 0.186* 0.248** 0.270** 0.174* 0.001 0.048 0.123 0.16 0.39 0.13 0.35 5.05 10.63	0.002 -0.002 -0.811 -0.254** -0.195** 0.422*** 0.366*** 0.186* 0.248** 0.128** 0.270** 0.174* 0.256** 0.001 0.048 0.054 0.123 0.718 0.16 0.39 0.40 0.13 0.35 0.37 5.05 10.63 12.47 9.23e-04 3.818e-09 1.061e-10	0.002 -0.002 -0.811 -0.011 -0.254** -0.195** -0.366*** 0.342** 0.422*** 0.366*** 0.342** -0.194* -0.194* 0.270** 0.174* 0.256** 0.174* 0.001 0.048 0.054 0.045 0.123 0.718 0.032 0.16 0.39 0.40 0.43 0.13 0.35 0.37 0.39 5.05 10.63 12.47 9.53 9.23e-04 3.818e-09 1.061e-10 1.023e-09

Centrality has a diminishing returns effect on performance

p < 0.10; * p < 0.05; ** p < 0.01; *** p < 0.001

To find the optimal number of paths a firm can sustain without its returns being diminished, we calculate the absolute value of the partial derivative with respect to SNC:

$$0.34/(2*0.194)=0.88$$

transform variables to their original values

X = mean + standard deviation * z-score, or

X = 285.24 + (566.03 * 0.88) = 785.54

Tier length

Centrality

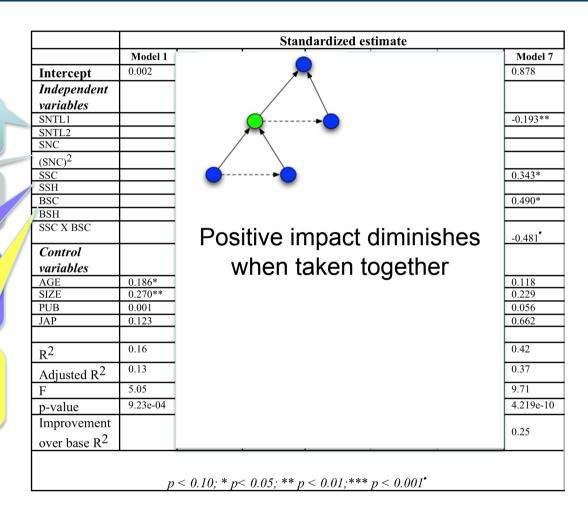
Suppliers' triads and holes

	Standardized estimate				
	Model 1		Model 5	<u> </u>	
Intercept	0.002		-0.003		
Independent					
variables					
SNTL1		_/	-0.289**		
SNTL2		<u> </u>	_		
SNC					
(SNC) ²			0.400***		
SSC SSH			0.408***		
BSC		D-4h 000 0	5.571		
BSH		Both SSC &			
SSC X BSC		CCLLbovo			
Control		SSH have	_		
		positive impact			
variables AGE	0.186*	positive impact	0.241**		
SIZE	0.180*		0.185*		
PUB	0.001		0.035		
JAP	0.123				
R^2	0.16		0.42		
Adjusted R ²	0.13		0.38		
F	5.05		10.44		
	9.23e-04		8.323e-10		
p-value	9.236-04		8.3236-10		
Improvement			0.26		
over base R ²					

Tier length

Centrality

Suppliers' triads and holes


		Standardized estimate	
	Model 1		Model 6
Intercept	0.002		-0.001
Independent			
variables		X	
SNTL1		/ \	-0.206 **
SNTL2			
SNC		<u> </u>	
$(SNC)^2$			
SSC			
SSH BSC			0.425***
BSH			0.425***
SSC X BSC		Both BSC & BSH	0.107
BBC A BBC			
Control		have positive impact	
variables		mare positive impact	
AGE	0.186*		0.292**
SIZE	0.270**		0.138*
PUB	0.001		0.020
JAP	0.123		
\mathbb{R}^2	0.16		0.46
Adjusted R ²	0.13		0.42
F	5.05		12.18
p-value	9.23e-04		3.387e-11
Improvement			0.29
over base R ²			0.29
	n	< 0.10; * p< 0.05; ** p < 0.01;*** p < 0.001	

Tier length

Centrality

Suppliers' triads and holes

Micro contributions

- Questioned centrality in a supply network
- Network measures should be specific to supply networks
- Network does have a significant impact on performance
- Need:
 - -Comparative studies
 - -Other industries

Paving the path to complex supply networks

Challenge 1: Proof

- Traceability technology
- Responsibility of the big guys

Challenge 2: Acceptance

How much stochasticity, how much complexity

Challenge 3: Understanding

New models

Thank you